Equations required for Higher Tier papers only are indicated by HT in the left-hand column.

Equation number	Word equation	Symbol equation
1	weight = mass × gravitational field strength (g)	W = m g
2	work done = force × distance (along the line of action of the force)	W = F s
3	force applied to a spring = spring constant × extension	F = k e
4	distance travelled = speed × time	s = v t
5	acceleration = change in velocity time taken	$a = \frac{\Delta v}{t}$
6	resultant force = mass × acceleration	F = m a
7 HT	momentum = mass × velocity	p = m v
8	kinetic energy = 0.5 × mass × (speed) ²	$E_k = \frac{1}{2}m v^2$
9	gravitational potential energy = mass × gravitational field strength (g) × height	$E_p = m g h$
10	power = energy transferred time	$P = \frac{E}{t}$
11	power = work done time	$P = \frac{W}{t}$
12	efficiency = useful output energy transfer total input energy transfer	
13	efficiency = useful power output total power input	
14	wave speed = frequency × wavelength	$v = f \lambda$
15	charge flow = current × time	Q = It
16	potential difference = current × resistance	V = I R
17	power = potential difference × current	P = V I
18	power = (current) ² × resistance	$P = I^2 R$
19	energy transferred = power × time	E = P t
20	energy transferred = charge flow × potential difference	E = QV
21	density = mass volume	$\rho = \frac{m}{V}$